科技日报记者 刘霞
美国科学家在最新一期《自然》杂志发表论文称,他们开发了首块可扩展的基于深度神经网络的光子芯片,每秒可对20亿张图像进行直接分类,而无需时钟、传感器或大内存模块,有望促进人脸识别、自动驾驶等领域的发展。
研究人员开发的芯片可以在不到1纳秒的时间内检测和分类图像,不需要单独的处理器或存储单元。
图片来源:今日宾夕法尼亚/Ella Maru工作室
模仿人脑工作的深度神经网络现在通常为计算机视觉、语音识别等提供支持。目前数字芯片上的消费级图像分类技术每秒可执行数十亿次计算,速度足以满足大多数应用,但更复杂的图像,如识别运动物体、3D物体或人体显微细胞分类仍面临不少障碍。
首先,这些系统通常使用基于数字时钟的平台,如图形处理单元(GPU)来实现,这将它们的计算速度限制在时钟频率上,计算必须逐个进行。其次,传统电子设 备将内存和处理单元分开,数据穿梭耗费时间。此外,原始图像数据通常需要转换为数字电子信号,耗时较长,而且需要大内存单元来存储图像和视频,引发潜在的 隐私问题。
鉴于此,宾夕法尼亚大学电气和系统工程副教授弗瑞兹·阿发雷托尼等人开发出一款可扩展芯片,每秒可对近20亿张图像进行分类。这是第一个完全在集成光子设 备上以可扩展方式实现的深度神经网络,整个芯片大小只有9.3平方毫米,消除了传统计算机芯片中的4个主要耗时障碍:光信号到电信号的转换、将输入数据转 换为二进制格式、大存储模块以及基于时钟的计算。
阿发雷托尼解释说,该芯片上的光学神经元通过光线相互连接,形成一个由许多“神经元层”组成的深层网络。信息通过“神经元层”传递,每一步都对图像分类, 使快速处理信息成为可能,最新芯片可在半纳秒内完成整个图像分类,而传统数字计算机芯片在同样时间内只能完成一个计算步骤。
研究人员表示,可通过添加更多神经层来扩展这一深层网络,使芯片能以更高分辨率读取更复杂图像中的数据。此外,任何可转换为光的信号,如音频和语音,都可使用这项技术几乎瞬间进行分类。